A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems
نویسندگان
چکیده
Article history: Received 23 January 2010 Received in revised form 23 April 2010 Accepted 26 April 2010 Available online 26 April 2010 During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and metaheuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems. © 2010 Growing Science Ltd. All rights reserved.
منابع مشابه
Heuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملSolving Flow Shop Scheduling Problems Using a Hybrid Genetic Scatter Search Algorithm
In this paper we consider n-jobs, m-machines permutation flow shop scheduling problems. Flow shop scheduling is one of the most important combinational optimization problems. The permutation flow shop scheduling problems are NP-Hard (Non deterministic Polynomial time Hard). Hence many heuristics and metaheuristics were addressed in the literature to solve these problems. In this paper a hybrid ...
متن کاملMILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints
In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...
متن کاملAn integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کامل